Flame Speed Correlations

FLAME SPEED CORRELATIONS FOR SELECTED FUELS

-Metghalchi and Keck [11] experimentally determined S_{L} for various fuel-air mixtures over a range of temperatures and pressures typical of conditions associated with reciprocating internal combustion engines and gas turbine combustors.
"Eqn 8.33 similar to Eqn. 8.29 is proposed

$$
\mathrm{S}_{\mathrm{L}}=\mathrm{S}_{\mathrm{L}, \text { rei }}\left(\frac{T_{u}}{T_{u, r e f}}\right)^{\gamma}\left(\frac{P}{P_{r e f}}\right)^{\beta}\left(1-2.1 \mathrm{Y}_{\text {dil }}\right)(8.33)
$$

for $T_{u}>\approx 350 \mathrm{~K}$.
-The subscript ref refers to reference conditions defined by
$T_{u, \text { ref }}=298 \mathrm{~K}, P_{\text {ref }}=1 \mathrm{~atm}$ and
$S_{L, \text { ref }}=B_{M}+B_{2}\left(\Phi-\Phi_{M}\right)^{2}$ (for reference conditions)
where the constants B_{M}, B_{2}, and Φ_{M} depend on fuel type and are given in Table 8.3.
"Exponents of T and P, γ and β are functions of Φ, expressed as
$\gamma=2.18-0.8(\Phi-1)$
$\beta=-0.16+0.22(\Phi-1)$
-The term $Y_{\text {dii }}$ is the mass fraction of diluent present in the air-fuel mixture in Eqn. 8.33 to account for any recirculated combustion products. This is a common technique used to control NO_{x} in many combustion systems

- Table 8.3 Values for $\mathrm{B}_{\mathrm{M}}, \mathrm{B}_{2}$, and Φ_{M} used in Eqn 8.33 [11]

Fuel	Φ_{M}	$\mathbf{B}_{\mathrm{M}}(\mathrm{cm} / \mathrm{s})$	$\mathbf{B}_{2}(\mathrm{~cm} / \mathrm{s})$
Methanol	1.11	36.92	-140.51
Propane	1.08	34.22	-138.65
Iso octane	1.13	26.32	-84.72
RMFD-303	1.13	27.58	-78.54

Example 8.3

Compare the laminar flame speeds of gasoline-air mixtures with $\Phi=0.8$ for the following three cases:
i. At ref conditions of $T=298 \mathrm{~K}$ and $\mathrm{P}=1 \mathrm{~atm}$
ii. At conditions typical of a spark-ignition engine operating at wide-open throttle: $T=685 \mathrm{~K}$ and P
$=18.38 \mathrm{~atm}$.
iii. Same as condition ii above, but with 15 percent (by mass) exhaust-gas recirculation

Solution

-RMFD-303 research fuel has a controlled composition simulating typical gasolines. The flame speed at 298 K and 1 atm is given by
$-\mathrm{S}_{\mathrm{L}, \text { ref }}=\mathrm{B}_{\mathrm{M}}+\mathrm{B}_{2}\left(\Phi-\Phi_{\mathrm{M}}\right)^{2}$
-From Table 8.3,
$-B_{M}=27.58 \mathrm{~cm} / \mathrm{s}, B_{2}=-78.38 \mathrm{~cm} / \mathrm{s}, \Phi_{M}=1.13$.

- $\mathrm{S}_{\mathrm{L}, \text { ref }}=27.58-78.34(0.8-1.13)^{2}=19.05 \mathrm{~cm} / \mathrm{s}$
-To find the flame speed at T_{u} and P other than the reference state, we employ Eqn. 8.33
$-\mathrm{S}_{\mathrm{L}}\left(\mathrm{T}_{\mathrm{u}}, \mathrm{P}\right)=\mathrm{S}_{\mathrm{L}, \text { ref }}\left(\frac{T_{u}}{T_{u, v e}}\right)^{\nu}\left(\frac{P}{P_{r e f}}\right)^{\beta}$
where
$\gamma=2.18-0.8(\Phi-1)=2.34$
$\beta=-0.16+0.22(\Phi-1)=-0.204$
Thus,
$\mathrm{S}_{\mathrm{L}}(685 \mathrm{~K}, 18.38 \mathrm{~atm})=$
$19.05(685 / 298)^{2.34}(18.38 / 1)^{-0.204}=73.8 \mathrm{~cm} / \mathrm{s}$
With dilution by exhaust-gas recirculation, the flame speed is reduced by factor ($1-2.1 \mathrm{Y}_{\text {dil }}$):
$\mathrm{S}_{\mathrm{L}}(685 \mathrm{~K}, 18.38 \mathrm{~atm}, 15 \% \mathrm{EGR})=$
$73.8 \mathrm{~cm} / \mathrm{s}[1-2.1(0.15)]=50.6 \mathrm{~cm} / \mathrm{s}$

QUENCHING, FLAMMABILITY, AND IGNITION

-Previously \Rightarrow steady propagation of premixed laminar flames
-Now \Rightarrow transient process: quenching and ignition. Attention to quenching distance, flammability limits, and minimum ignition energies with heat losses controlling the phenomena.

1. Quenching by a Cold Wall

-Flames extinguish upon entering a sufficiently small passageway. If the passageway is not too small, the flame will propagate through it. The critical diameter of a circular tube where a flame extinguishes rather than propagates, is referred to as the quenching distance.
-Experimental quenching distances are determined by observing whether a flame stabilised above a tube does or does not flashback for a particular tube diameter when the reactant flow is rapidly shut off.

- Quenching distances are also determined using high-aspect-ratio rectangular-slot burners. In this case, the quenching distance between the long sides, i.e., the slit width.
-Tube-based quenching distances are somewhat larger (~20-50 percent) than slit-based ones [21]

Figure 8.18 Schematic of flame quenching between two parallel walls.
2. Flammability Limits

- A flame will propagate only within a range of mixture the so-called lower and upper limits of flammability. The limit is the leanest mixture ($\Phi<$ 1), while the upper limit represents the richest mixture $(\Phi>1) . \Phi=(A / F)_{\text {stoich }} /(A / F)_{\text {actual }}$ by mass or by mole
-Flammability limits are frequently quoted as \%fuel by volume in the mixture, or as a \% of the stoichiometric fuel requirement, i.e., (Ф x 100\%). Table 8.4 shows flammability limits of some fuels
-Flammability limits for a number of fuel-air mixtures at atmospheric pressure is obtained from experiments employing "tube method".
- In this method, it is ascertained whether or not a flame initiated at the bottom of a vertical tube (approximately $50-\mathrm{mm}$ diameter by $1.2-\mathrm{m}$ long) propagates the length of the tube.
- A mixture that sustains the flame is said to be flammable. By adjusting the mixture strength, the flammability limit can be ascertained.
-Table 8.4 Flammability limits, quenching distances and minimum ignition energies

	Flammability limit			Quenching distance, d	
	$\Phi_{\min }$	$\Phi_{\max }$	Stoich-mass air-fuel ratio	For $\Phi=1$	Absolute min, mm
$\mathrm{C}_{2} \mathrm{H}_{2}$	0.19	∞	13.3	2.3	-
CO	0.34	6.76	2.46	-	-
$\mathrm{C}_{10} \mathrm{H}_{22}$	0.36	3.92	15.0	2.1	-
$\mathrm{C}_{2} \mathrm{H}_{6}$	0.50	2.72	16.0	2.3	1.8
$\mathrm{C}_{2} \mathrm{H}_{4}$	0.41	>6.1	14.8	1.3	-
H_{2}	0.14	2.54	34.5	0.64	0.61
CH_{4}	0.46	1.64	17.2	2.5	2.0
$\mathrm{CH}_{3} \mathrm{OH}$	0.48	4.08	6.46	1.8	1.5
$\mathrm{C}_{8} \mathrm{H}_{18}$	0.51	4.25	15.1	-	-
$\mathrm{C}_{3} \mathrm{H}_{8}$	0.51	2.83	15.6	2.0	1.8

Fuel	Minimum ignition energy	
	For $\Phi=1\left(10^{-5} \mathrm{~J}\right)$	Absolute minimum $\left(10^{-5} \mathrm{~J}\right)$
$\mathrm{C}_{2} \mathrm{H}_{2}$	3	-
CO	-	-
$\mathrm{C}_{10} \mathrm{H}_{22}$	-	-
$\mathrm{C}_{2} \mathrm{H}_{6}$	42	24
$\mathrm{C}_{2} \mathrm{H}_{4}$	9.6	-
H_{2}	2.0	1.8
CH_{4}	33	29
$\mathrm{CH}_{3} \mathrm{OH}$	21.5	14
$\mathrm{C}_{8} \mathrm{H}_{18}$	-	-
$\mathrm{C}_{3} \mathrm{H}_{8}$	30.5	26

3. Ignition

-Most of ignition uses electrical spark (pemantik listrik). Another means is using pilot ignition (flame from very low-flow fuel).

Simplified Ignition Analysis

-Consider Williams' second criterion, applied to a spherical volume of gas, which represents the incipient propagating flame created by a point spark. Using the criterion:
-Find a critical gas-volume radius, $\mathbf{R}_{\text {crit }}$, below which flame will not propagate
-Find minimum ignition energy, $E_{i g n}$, to heat critical gas volume from initial state to flame temperature (T_{u} to T_{b}).

Figure 8.20
Critical volume of gas for spark ignition.

Figure 8.22. Effect of \%fuel on $\mathrm{E}_{\text {ign }}$

Figure 8.23. Effect of methane composition on $E_{\text {ign }}$

Table 8.5 Temperature influence

 on spark-ignition energy| Fuel | Initial temp (K) | $\mathrm{E}_{\text {ign }}(\mathbf{m J})$ |
| :---: | :---: | :---: |
| n-heptane | 298 | 14.5 |
| | 373 | 6.7 |
| | 444 | 3.2 |
| Iso-octane | 298 | 27.0 |
| | 373 | 11.0 |
| | 444 | 4.8 |
| n-pentane | 243 | 45.0 |
| | 253 | 14.5 |

Fuel	Initial temp (\mathbf{K})	$\mathbf{E}_{\text {ign }}(\mathbf{m J})$
n-pentane	298	7.8
	373	4.2
	444	2.3
propane	233	11.7
	243	9.7
	253	8.4
	298	5.5
	331	4.2
	356	3.6
	373	3.5
	477	1.4

Premixed vs diffusion flames

Structure of a premixed flame (schematic)

Structure of a diffusion flame (schematic)

2- Laminar diffusion flames

- Seperate feeding of fuel and oxidizer into the combustion chamber
- Diesel engine
- Jet engine
- In the combustion chamber:
- Mixing
- Subsequently combustion
- Mixing: Convection and diffusion
- On a molecular level
\rightarrow (locally) stoichiometric mixture
- Simple example for a diffusion flame: Candle flame
- Paraffin vaporizes at the wick
\rightarrow diffuses into the surrounding air
- Simultaneously: Air flows towards the flame due to free convection and forms a mixture with the vaporized paraffin

A very difficult flame: the candle flame

Combustion Theory

- The solid fuel is first heated by heat transfer induced by combustion. The liquid fuel reaches the flame by capillarity along the wick and is vaporized.
- Fuel oxidation occurs in thin blue layers (the color corresponds to the spontaneous emission of the CH radical)
- Unburnt carbon particles are formed because the fuel is in excess in the reaction zone. The this soot is the source of the yellow light emission.
- Flow (entrainment of heavy cold fresh air and evacuation of hot light burnt gases) is induced by natural convection

Example : gas lighter

- Fuel enters into the combustion chamber as a round jet
- Forming mixture is ignited
- Example: Flame of a gas lighter
- Only stable if dimensions are small
- Dimensions too large: flickering due to influence of gravity
- Increasing the jet momentum \rightarrow Reduction of the relative importance of gravity (buoyancy) in favor of momentum forces

- At high velocities, hydrodynamic instabilities gain increasing importance: laminar-turbulent transition

